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Credit portfolios

Overview of credit portfolio risk

Challenges in credit risk modeling

Core difficulties in credit modeling

Sparse data: default infrequent, joint default even more infrequent

� In some years even spec grade realized default rate is zero

Skewness of credit risk: market risk may have fat tails, but generally
“continuous” distributions

� Exception: currencies with fixed exchange rates
� Credit risk of single obligor and even portfolios closer to binary
� Senior structured credit closer to binary
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Credit portfolios

Overview of credit portfolio risk

Challenges in credit risk modeling

Skewness of credit risk
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Probability distribution of bond value one year hence in the Merton model. Firm
assets’ drift rate 10 percent, annual volatility 25 percent, and initial value 145; debt
consists of a bond, par value 100 and 8 percent coupon. Default probability is 4.91
percent, so 95.09 percent of the probability mass is located at a single point.
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Credit portfolios

Overview of credit portfolio risk

Defining credit portfolio risk

Credit portfolio risk concepts

Default correlation: measure of the likelihood that 2 firms both default
in the next year

� Default correlation is an event correlation↔asset return
correlation

� Portfolio lender generally doesn’t want even low-probability
possibility of “cluster” of defaults

� Exception: (→)structured product equity tranche

Granularity or diversification: many small debt obligations relative to
total portfolio

� Often measured via Herfindahl index

Credit Value-at-Risk defined as
α-quantile of credit loss distribution minus EL

� Portfolio credit managers, banks, take account of expected
losses in reserving, capital planning
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Credit portfolios

Overview of credit portfolio risk

Defining credit portfolio risk

Approaches to credit portfolio risk modeling

� Basic model types
� Closed-form: single-factor model
� Simulation: copula model
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Credit portfolios

Default correlation

Definition of default correlation

Joint default in a two-credit portfolio

� Simplest framework: two obligors (households, firms or countries)
� Fixed time horizon τ years
� Event of default Bernoulli distributed
� τ -year probabilities of default of obligors 1 and 2 denoted π1 and π2

� Joint default probability—probability both obligors default—denoted
π12

� Joint default distribution↔product of two (possible correlated)
Bernoulli variates x1 and x2:

Outcome x1 x2 x1x2 Probability

Both firms default 1 1 1 π12

Firm 1 only defaults 1 0 0 π1 − π12

Firm 2 only defaults 0 1 0 π2 − π12

No default 0 0 0 1− π1 − π2 + π12

8/27



Credit portfolios

Default correlation

Definition of default correlation

Default correlation in a two-credit portfolio

� For any pair of credits, default correlation defined as rank correlation:

ρ12 =
π12 − π1π2√

π1(1− π1)
√
π2(1− π2)

� Default correlation is zero ⇔ π12 = π1π2

� Identical firms: if π1 = π2 = π, simplifies to:

ρ12 =
π12 − π2

π(1− π)

� Examples:
� π1 = π2 = 0.01, π12 = 0.0005: ρ12 = 0.040404
� π1 = π2 = 0.10, π12 = 0.0250: ρ12 = 0.166667

� Joint default probability and default correlation generally small
numbers, since default infrequent
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Credit portfolios

Default correlation

Definition of default correlation

Correlated and uncorrelated defaults
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Positively correlated asset returns

Probability of joint default of two borrowers, each with default probability 1 percent. Left panel:
zero correlation. Right panel: moderate positive correlation coefficient ρ = 0.50.

10/27



Credit portfolios

Default correlation

Definition of default correlation

Default correlation and credit portfolio risk

� Key risk to capture: extreme credit events

� Default correlation related to default clustering and concept of
(→)contagion of financial distress/insolvency among firms

� Skewness and tail risk amplified by clusters of defaults and/or high
loss given default (LGD)

� Higher default correlation makes clusters of defaults likelier for wide
range of default probabilities

� Structuring/tranching can alter both clustering and LGD
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Credit portfolios

Default correlation

Uncorrelated portfolios

Credit analysis of an uncorrelated portfolio

� Simple credit portfolios with uncorrelated defaults
� Portfolio of n identical loans or bonds
� All pairwise default correlations zero
� All default probabilities equal π

� ⇒Number of defaults follows binomial distribution with
parameters n and π

� Determine probability distribution of number of defaults or default
count

� Expected number of defaults—the expected value of the default
count—is πn

� Can compute probabilities and quantiles of the default count

� Then use loan par values to determine distribution of credit loss
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Credit portfolios

Default correlation

Uncorrelated portfolios

Uncorrelated default count distribution: example

� Number of loans n = 100

� Default probability π = 0.025

� Default correlation zero

� 0.99-quantile of default count is 7

� Binomial distribution table:

# defaults cumul. prob

0 0.0795
1 0.2834
2 0.5422
3 0.7590
4 0.8937
5 0.9601
6 0.9870

7 0.9963
8 0.9991

expected#
defaults=π×

n

α=0.99
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Cumulative probability function of
number of defaults. Orange grid line at
expected default count. Cyan grid line
at 0.99-quantile of default count. The
x-axis is truncated at 8 defaults.
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Credit portfolios

Default correlation

Uncorrelated portfolios

Credit loss distribution in an uncorrelated portfolio
� With additional data on the term and size (par value) of the n loans,
we can determine distribution of credit loss in currency units
Credit loss: default count × loan size
Expected loss: expected value of credit loss, default probability ×

portfolio total par value
Credit Value-at-Risk: a high quantile of default count × loan size

− expected loss
� Simplifying assumptions

� Set loan term equal to risk/VaR horizon
� Default only at maturity⇔zero- or single-coupon loans
� Recovery equal to zero⇔LGD 100 percent
� Identical loans⇔loan size = n−1× portfolio total par value

� Example: portfolio total par value �1 000 000, n = 100, π = 0.025
� Loan size �10 000

α = 0.95 α = 0.99

Loss quantile (no. loans) 5 7
Loss quantile (�) 50 000 70 000
Credit VaR (�) 25 000 45 000
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Credit portfolios

Default correlation

Uncorrelated portfolios

Granularity reduces risk

� Higher granularity reduces default loss variance, turns expected
default loss into a “cost”

� Effect is greatest for low default probabilities

� Risk reduction effect of granularity is much lower in a portfolio with
high correlation

� For example, granular mortgage pool, but regionally concentrated
and with high-risk borrowers

� High granularity similar in economic effect to low default correlation
and v.v.

� Low granularity→very large losses with low but material probability
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Credit portfolios

Default correlation

Uncorrelated portfolios

Granularity and risk: example

� Parameters of the example:
� n = {1, 50, 1000} one-year zero-coupon loans
� π = {0.005, 0.025, 0.05} default probability
� Default correlation set to zero
� Recovery is zero (LGD is 100%)

� Granularity very low for n = 1, very high for n = 1000
� Expected loss then equals default probability
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Credit portfolios

Default correlation

Uncorrelated portfolios

Granularity reduces risk: results of the example

� Portfolio with low granularity or very low default probability
� Has binary “0-1” risk, behaves like a coin toss
� High probability of no loss, small but material probability π of

complete loss

� Portfolio with high granularity
� Very narrow range of likely loss rates
� Loss rate very likely to be close to expected loss/default probability π

� Portfolio with moderate granularity
� Has a wider range of likely outcomes
� And thus greater probability of material unexpected loss
� Has low probability of complete or near-complete loss
� Impact of granularity greater for higher default probability π
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Credit portfolios

Default correlation

Uncorrelated portfolios

Credit VaR, granularity, and default probability
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Cumulative probability distribution function of losses for n equally-sized loans and
default probabilities π, as a fraction of portfolio value. The x-axis measures the loss
rate in the portfolio as a fraction of the portfolio’s total par value; the y -axis measures
probability. Each point shows the probability of a realized loss of that magnitude or
less. Cyan grid line placed at 99 percent credit VaR. Orange grid line placed at
expected loss and is the same in each column.
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Credit portfolios

Default correlation

Uncorrelated portfolios

Credit loss distribution in an uncorrelated portfolio

No diversification: For n = 1

credit VaR =

{ −EL
1− EL

}
for π

{
<
≥
}
1− α

High granularity: credit VaR→ 0 as n → ∞
n π = 0.005 π = 0.025 π = 0.05

1
0.99-quantile of credit losses 0.00000 1.00000 1.00000
Credit VaR at 99% confidence -0.00500 0.97500 0.95000

50
0.99-quantile of credit losses 0.04000 0.08000 0.14000
Credit VaR at 99% confidence 0.03500 0.05500 0.09000

1000
0.99-quantile of credit losses 0.01100 0.03700 0.06700
Credit VaR at 99% confidence 0.00600 0.01200 0.01700

50000
0.99-quantile of credit losses 0.00574 0.02664 0.05228
Credit VaR at 99% confidence 0.00074 0.00164 0.00228

Expressed as a fraction of portfolio par value.
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Credit portfolios

Default correlation

Uncorrelated portfolios

Granularity and coherence

� Low granularity—even with low default correlation—is associated
with

� Negative credit VaR
� And violations of coherence of VaR, esp. subadditivity property

� Example: single credit with R = 0, default probability π

� For VaR confidence level α, portfolio VaR will be negative for

π < 1−√
α
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Credit portfolios

Default correlation

Uncorrelated portfolios

Violation of subadditivity
� Concentrated portfolios may have higher credit VaR than
constituent securities

� Example: equal amounts of two identical uncorrelated credits
� Loss distribution with ρ12 = 0, R = 0, default probability π

Both default π2

1 default 2(π − π2) = 2π(1− π)2

No default (1− π)2 = 1− 2π + π2

� For any VaR confidence level α, portfolio VaR will be negative for

(1 − π)2 > α ↔ π < 1−√
α

� E.g. for α = 0.99, π < 1−√
0.99 = 0.0050126

� Violates subadditivity property of coherence for 1−√
α ≤ π < 1− α

Loss (%) π = 0.005 π = 0.00525

0.0 0.990025 0.989528
0.5 0.00995 0.0104449
1.0 0.000025 0.0000275625

� Provides incentive in VaR-based limit system for separating low
probability/high loss credits into distinct portfolios
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Credit portfolios

Copula models

Overview of copula models

What problem does the copula approach solve?

� Factor models make many assumptions
� Structural model, need to identify factors correctly
� Little role for idiosyncratic risk

� →Search for models with market-informed parameters
� Useful for estimating spread risk of portfolio credit products

� A copula is a postulated parametric family of joint distributions
� Exploits the little information we have on portfolio default

distribution
� Choice of copula a judgement call
� Trade-off between ability to capture tail risk and need to

estimate/guess at additional parameters

� Facilitates estimation of joint distribution via simulation

22/27



Credit portfolios

Copula models

Overview of copula models

Information needed to apply copula approach

� Default distribution of each individual single credit
� We have some information: default probabilities from ratings, credit

spreads

� Default correlations
� We have some information from estimates of asset or equity return

correlations, implied correlations from equity and credit derivatives
� But much less knowledge than of default probabilities
� May need to assume all default correlations identical, estimate

“general level”

� Little else known about the joint distribution of credit losses
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Credit portfolios

Copula models

Using simulations in a copula model

Sketch of the procedure

� Generate simulations from chosen copula, e.g. multivariate standard
normal with specified correlation matrix

� Map each simulated value into a value of the associated cumulative
probability distribution function

� For example, a simulated standard normal variate equal to 1.0 maps
to a probability of 83.13 percent, −2.33 to a probability of 1.0
percent

� Copula approach assumes these standard normals rather than
defaults are jointly normally distributed

� Use the default time distributions of individual credits to map from a
probability to a simulated default time
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Copula models

Using simulations in a copula model

Simulating single-credit default times
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Cumulative default time distribution for a credit with a one-year default probability of
0.05⇒hazard rate is 0.0513. Points represent 20 simulated values of the uniform
distribution.
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Credit portfolios

Copula models

Using simulations in a copula model

Shifting from uniform to normal simulations
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Graph traces how to change one thread of a uniform simulation to a normal
simulation. The lower right panel shows the default time distribution for a credit with
a one-year default probability of 5 percent.
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Copula models

Using simulations in a copula model

Simulating multiple defaults
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Lower left quadrant displays 1000 simulations from a bivariate standard normal with a correlation
coefficient of 0.25. The lower right (upper left) panel shows the default time distribution for a
credit with a one-year default probability of 10 percent (5 percent), with cumulative probabilities
expressed as standard normal quantiles. Orange grid lines in the upper right quadrant partition the
simulation results into default times less than and greater than one year for each obligor.
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